APO-CARVEDILOL TABLETS

NAME OF THE MEDICINE
Carvedilol.

Chemical Name: (+/-)-1-(9 H-carbazol-4-yloxy) -3-[[2-(2-methoxyphenoxy) ethyl]amino]propan-2-ol.

Structural Formula:

![Structural Formula of Carvedilol](image)

Molecular Formula: C_{24}H_{26}N_{2}O_{4}
Molecular Weight: 406.5
CAS Registry Number: 72956-09-3

DESCRIPTION
Carvedilol is a white crystalline powder and has low solubility in water (0.01 mg/mL). It is soluble in ethanol (22.7 mg/mL).

Each tablet contains carvedilol, as the active ingredient. In addition, each tablet contains the following inactive ingredients: cellulose microcrystalline, lactose, crospovidone, povidone, colloidal anhydrous silica, magnesium stearate, opadry II complete film coating system YS-22-18096 white.

PHARMACOLOGY
Pharmacological Actions
Carvedilol is a dual action cardiovascular agent.

It is a vasodilating, non-selective beta-blocking agent with antioxidant properties. Vasodilation has been shown to be mediated primarily by selective blockade of alpha_{1}-adrenoreceptors.

Carvedilol is a racemic mixture. In animal models, both enantiomers have alpha-adrenergic receptor blocking properties. The beta-adrenergic receptor blocking properties are non-selective for beta_{1}- and beta_{2}-adrenoreceptors and are associated with the laevorotatory enantiomer of carvedilol. Carvedilol has no intrinsic sympathomimetic activity and, like propranolol, it has membrane stabilising properties. Carvedilol suppresses the renin/angiotensin/aldosterone system through beta-blockade.

The mechanism for the beneficial effects of carvedilol in congestive heart failure has not been established. Possible mechanisms include neurohormonal inhibition, beta-blockade, balanced vasodilation (reduced preload and afterload), antioxidant activity, potent anti-ischaemic activity and inhibition of neutrophil adhesion. Antioxidant activity and inhibition of neutrophil adhesion have been demonstrated in *in vitro* and *in vivo* animal models and in *in vitro* human models.

Carvedilol reduces the peripheral vascular resistance by vasodilation, predominantly mediated through selective alpha_{1}-antagonism and beta-blockade prevents reflex tachycardia with the net result that heart rate is slightly decreased.
In hypertensive patients, a reduction in blood pressure is not associated with a concomitant increase in total peripheral resistance, as observed with pure beta-blocking agents. Renal blood flow and renal function are maintained. Peripheral blood flow is maintained, therefore cold extremities (often observed with drugs possessing beta-blocking activity) are rarely seen. Fluid retention does not occur.

In studies that compared the acute haemodynamic effects of carvedilol to baseline measurements in patients with congestive heart failure, there were significant reductions in systemic blood pressure, pulmonary artery pressure, pulmonary capillary wedge pressure and heart rate. Initial effects on cardiac output, stroke volume index and systemic vascular resistance were small and variable.

In terms of chronic haemodynamic effects (12 to 14 weeks) carvedilol significantly reduced systemic blood pressure, pulmonary artery pressure, right atrial pressure, systemic vascular resistance and heart rate while stroke volume index was increased.

In patients with ischaemic cardiomyopathy, long-term treatment (six months) with carvedilol (6.25, 12.5 and 25 mg) reduced left ventricular dimensions measured echocardiographically.

In patients with renal impairment, the autoregulatory blood supply is preserved and the glomerular filtration is unchanged during chronic treatment with carvedilol.

A normal ratio of high density lipoproteins to low density lipoproteins (HDL/LDL) is maintained. Serum electrolytes are also unaffected.

During one small randomised trial in patients with hypertension and non-insulin dependent diabetes carvedilol exerted no significant effect on fasting glucose, post-prandial glucose concentration and glycosylated haemoglobin A1. In another trial of non-insulin dependent diabetics, carvedilol did not significantly affect glucose tolerance test result. A third trial in hypertensive non-diabetic subjects with metabolic syndrome and baseline insulin resistance carvedilol demonstrated a modest but non-significant increase in insulin sensitivity. A fourth trial demonstrated a decrease in plasma glucose and insulin responses to a glucose load in hypertensive non-insulin dependent diabetics.

Pharmacokinetics

Absorption

Carvedilol is rapidly and extensively absorbed following oral administration. Carvedilol is a substrate of the intestinal efflux transporter P-glycoprotein which plays a major role in the bioavailability of certain medicines. The absolute bioavailability of carvedilol is approximately 25%. Plasma levels peak approximately one hour after an oral dose. Carvedilol undergoes stereoselective first-pass metabolism with plasma levels of R(+)-carvedilol approximately two to fourfold higher than S(-)-carvedilol following oral administration in healthy subjects. Plasma levels increase in a dose proportional manner. No data on the effect of food on carvedilol tablets exist. Studies carried out with the capsule formulation indicate that food does not affect the extent of bioavailability or the maximum plasma concentration, although the time to reach maximum plasma concentration is delayed.

Distribution

Greater than 98% of carvedilol is bound to plasma proteins, primarily albumin. Carvedilol is highly lipophilic; the volume of distribution is approximately 2 L/kg and is increased in patients with liver disease. When used as directed, carvedilol is unlikely to accumulate during long-term treatment.

Metabolism

In humans, carvedilol is extensively metabolised in the liver via oxidation and glucuronidation into a variety of metabolites which are mainly excreted in the bile. The first-pass effect after oral administration amounts to about 60 to 75%; enterohepatic circulation of carvedilol and/or its metabolites has been shown in animals.

The oxidative metabolism of carvedilol is stereoselective. The R(+) enantiomer is predominantly metabolised by CYP2D6 and CYP1A2, while the S(-) enantiomer is mainly metabolised by CYP2C9 and to a lesser extent by CYP2D6. Other CYP450 isoenzymes involved in the metabolism of carvedilol include CYP3A4, CYP2C19 and CYP2E1. The maximum plasma concentration of R-carvedilol is approximately 2 fold higher than that S-carvedilol. Although results from *in vitro* studies demonstrate that carvedilol has
inhibitory potential against several P450s (CYP1A2, CYP2C9/8, CYP2C19, CYP3A and CYP2D6), it is important to note that the estimated IC50 values (concentration of carvedilol required to produce 50% inhibition of the CYP450 isoenzymes) for the R(+) and S(-) enantiomers are substantially higher than their circulating peak plasma levels achieved during therapy.

The R(+) enantiomer is predominantly metabolised through hydroxylation.

Poor metabolisers of debrisoquine (a marker for CYP2D6) exhibited two to threefold higher plasma concentrations of R(+) carvedilol, compared to extensive metabolisers. In contrast, plasma levels for S(-) carvedilol were only increased by about 20 to 25% in poor metabolisers. As R(+) carvedilol is only responsible for alpha-blocking activity, it would be anticipated that, on average, poor metabolisers of debrisoquine would have greater alpha-blockade after carvedilol administration with little change in beta-blocking activity, compared to extensive metabolisers (see INTERACTIONS WITH OTHER MEDICINES).

The pharmacokinetics of carvedilol do not appear to be different in poor metabolisers of S-mephenytoin (patients deficient in CYP2C19).

Demethylation and hydroxylation at the phenol ring produces three active metabolites with beta-receptor blocking activity. Based on preclinical studies, the 4'-hydroxyphenol metabolite is approximately 13 times more potent than carvedilol for beta-blockade. Compared to carvedilol, the three active metabolites exhibit weak vasodilating activity. In humans, the concentrations of the three active metabolites are about 10 times lower than that of the parent substance.

According to an in vitro study using rat brain homogenate, two of the hydroxy-carbazole metabolites of carvedilol are extremely potent antioxidants, demonstrating a 30 to 80 fold greater potency than carvedilol. Clinical significance remains to be established.

Excretion

After oral administration, the elimination half-life of carvedilol is approximately six to ten hours. Plasma clearance ranges from 500 to 700 mL/min. Elimination is mainly biliary, with the primary route of excretion being via the faeces. A minor portion is eliminated via the kidneys.

The pharmacokinetics of carvedilol are affected by age. Area under the curve (AUC) and T_{max} values are increased in the elderly. Plasma levels of carvedilol are approximately 50% higher in the elderly compared to young subjects.

Steady-state plasma concentrations of both carvedilol enantiomers increased proportionally over the 6.25 - 50 mg dose range in patients with congestive heart failure. Compared to healthy subjects, congestive heart failure patients had increased mean AUC and C_{max} values for both carvedilol enantiomers with up to 50 - 100% higher values observed in class IV patients. The mean apparent terminal elimination half-life for carvedilol was similar to that observed in healthy subjects.

Special Populations

Patients With Renal Impairment

In patients with hypertension and renal insufficiency, the area under plasma level-time curve, elimination half-life and maximum plasma concentration do not change significantly. Following a single dose (12.5 mg) the mean ± SD of AUCs on day 1 were 220 ± 120 in patients with renal impairment and 165 ± 83.5 ng.h/mL in controls. Following multiple doses (25 mg daily) and on day 9, the corresponding AUCs were 618 ± 335 in patients with renal impairment and 413 ± 247 ng.h/mL in controls. Renal excretion of the unchanged drug decreases in the patients with renal insufficiency; however changes in pharmacokinetic parameters are modest for racemic carvedilol and R(+)carvedilol.

Carvedilol is not eliminated during dialysis because it does not cross the dialysis membrane, probably due to its high plasma protein binding.

Patients with Hepatic Impairment

Carvedilol is contraindicated in patients with clinically manifest liver dysfunction (see CONTRAINDICATIONS). A pharmacokinetic study in cirrhotic patients has shown that exposure (AUC) to carvedilol was increased by 6.8 folds in patients with liver impairment as compared to healthy subjects.
Patients with Heart Failure
In a study in 24 patients with heart failure, the clearance of R- and S-carvedilol was significantly lower than previously estimated in healthy volunteers. These results suggested that the pharmacokinetics of R- and S-carvedilol is significantly altered by heart failure.

Geriatric Use
Age has no statistically significant effect on the pharmacokinetics of carvedilol in hypertensive patients. A study in elderly hypertensive patients showed that there was no significant difference in the adverse event profile compared to younger patients. Another study which included elderly patients with coronary heart disease showed no significant difference in the adverse events reported vs those reported by younger patients.

Paediatric Use
There is limited data available on pharmacokinetics in people younger than 18 years of age.

CLINICAL TRIALS
The use of this agent in congestive heart failure (CHF) patients has been shown to reduce cardiovascular hospitalisation, improve patient well-being, slow the progression of the disease and reduce the risk of death.

Four U.S. multicentre double blind placebo controlled studies enrolled 1,094 patients (696 randomised to carvedilol) with New York Heart Association (NYHA) class II to III heart failure and ejection fraction < 0.35. The vast majority was on digitalis, diuretics and an ACE-inhibitor at study entry. Patients were assigned to the studies based upon exercise ability. An Australia/New Zealand double blind placebo controlled study randomised 415 patients (half to carvedilol) with less severe heart failure. All protocols excluded patients expected to undergo cardiac surgery during the 6 to 12 months of double blind follow-up. All randomised patients had tolerated a two week course of carvedilol 6.25 mg b.i.d. (twice daily).

In each study, there was a primary endpoint, either progression of heart failure (one U.S. study) or exercise tolerance (two U.S. studies meeting enrolment goals and the Australia/New Zealand study). There were many secondary endpoints specified in these studies, including NYHA classification, patient and doctor global assessments, and cardiovascular hospitalisation. Death was not a specified end-point in any study, but it was analysed in all studies. Other analyses not prospectively planned included the sum of deaths and total or cardiovascular hospitalisations. In situations where the primary endpoints of a trial do not show a significant benefit of treatment, assignment of significance values to the other results is complex, and such values need to be interpreted cautiously.

The results of the U.S. and Australia-New Zealand trials were as follows:
Slowing Progression of Heart Failure
One U.S. multicentre study (366 subjects) had as its primary end-point the sum of cardiovascular mortality, cardiovascular hospitalisation and sustained increase in heart failure medications. Heart failure progression was reduced, during an average follow-up of 7 months, by 48% (p=0.008).

In the Australia-New Zealand study, death and total hospitalisations were reduced by about 25% over 18-24 months. In the three largest U.S. studies, death and total hospitalisations were reduced by 19%, 39% and 49%, these results being nominally statistically significant in the last two studies. The Australia-New Zealand results were statistically borderline.

Functional Measures
None of the multicentre studies had NYHA classification as a primary endpoint, but all such studies had it as a secondary end-point. There was at least a trend toward improvement in NYHA class in all studies. Exercise tolerance was the primary end-point in 3 studies; in none was a statistically significant effect found.
Subjective Measures
Quality of life, as measured with a standard questionnaire (a primary endpoint in one study), was unaffected by carvedilol. However, patients’ and investigators’ global assessments showed significant improvement in most studies.

Mortality
Mortality was not a planned endpoint in any study. Overall the results from four US studies are consistent with a beneficial effect of carvedilol on mortality due to the consistency of the results seen across different trials. However, the actual effect, size and statistical difference of this observation are difficult to define.

Severe Congestive Heart Failure (COPERNICUS) Trial
In a large, multi-centre, double-blind, placebo-controlled mortality trial (COPERNICUS), 2289 patients with stable, severe, CHF of ischaemic, or non-ischaemic origin, on standard therapy, were randomised to either carvedilol (1156 patients) or placebo (1133 patients). Patients had left ventricular systolic dysfunction with a mean ejection fraction of < 20%, sitting systolic blood pressure ≥ 85 mmHg, no more than trace edema of the peripheral limbs, no new pulmonary rales or ascites, optimisation of diuretic therapy and other established therapy such as ACE inhibitors and angiotensin-II antagonists, no recent unstable angina, cardiac surgery or ventricular arrhythmias and no recent use of intravenous positive inotropic or vasodilator agents (other than digitalis). The primary efficacy parameter was all-cause mortality and the secondary efficacy parameters were defined as combined mortality or hospitalisations for heart failure, mortality or cardiovascular hospitalisations and mortality or all-cause hospitalisations. Interim analyses were conducted to determine whether the Data Safety Monitoring Board (DSMB) could recommend the study to be terminated early due to convincing evidence of benefit or harm. Deaths were classified as either cardiovascular or non-cardiovascular, and within the group of cardiovascular deaths as being due to left ventricular dysfunction or other cardiovascular causes.

Efficacy results
At the fourth interim analysis, the upper interim monitoring boundary was exceeded, indicating a statistically significant survival benefit for patients on carvedilol. As a result, the DSMB recommended early termination of the trial.

Primary Efficacy Parameter
The rate of survival was significantly higher in the patients receiving carvedilol than the placebo group. The benefit of carvedilol became apparent after about 100 days of treatment. All-cause mortality was reduced by 35% from 19.7% in the placebo group to 12.8% in the carvedilol group (Cox proportional hazards, p=0.00013). The mortality benefit of carvedilol was consistent across all sub-populations investigated. The most frequent cause of death, sudden death, was reduced by 41% in the carvedilol group (5.3% vs 8.9%).
Secondary Efficacy Parameters

Hospitalisations due to worsening heart failure, cardiovascular hospitalisations and all hospitalisations were significantly reduced under carvedilol therapy. Thus, the combined risk of death or hospitalisation due to worsening heart failure was reduced by 31% (p=0.000004), death or cardiovascular hospitalisation by 27% (p=0.000023) and death or all hospitalisation by 24% (p=0.00004).

Table 1- One-year Kaplan-Meier estimates of the incidences of the combined endpoints death or hospitalisations, hazard ratio estimates and log-rank p values.

<table>
<thead>
<tr>
<th>ITT Population</th>
<th>Total Events Placebo</th>
<th>One-Year K-M Estimate Placebo</th>
<th>Total Events Carvedilol</th>
<th>One-Year K-M Estimate Carvedilol</th>
<th>Hazard Ratio (Carvedilol vs Placebo) (95% CI)</th>
<th>p Value (Log-Rank Test)</th>
<th>% Risk Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Death or hospitalisations for heart failure</td>
<td>357 0.379</td>
<td>271 0.255</td>
<td>0.691 (0.590, 0.809)</td>
<td>0.000004</td>
<td>31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Death or cardiovascular hospitalisations</td>
<td>395 0.417</td>
<td>314 0.302</td>
<td>0.727 (0.627, 0.843)</td>
<td>0.000023</td>
<td>27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Death or all hospitalisations</td>
<td>507 0.523</td>
<td>425 0.416</td>
<td>0.764 (0.671, 0.869)</td>
<td>0.000040</td>
<td>24</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The majority of patients were hospitalised for cardiovascular reasons. Treatment with carvedilol resulted in lower rates for almost all cardiac hospitalisations (worsening heart failure, atrial and ventricular and tachyarrhythmias, myocardial infarction and unstable angina pectoris). The number of patients hospitalised for symptomatic bradycardia and symptomatic heart block were slightly higher in the carvedilol treated patients than placebo, although the total number of patients hospitalised was low (1.3% and 0.8% respectively for bradycardia and 0.3% and 0.1% respectively for heart block). The number of patients hospitalised for non-cardiovascular events was similar in both groups (placebo 11.2%, carvedilol 10.6%).

INDICATIONS
Carvedilol is indicated for the treatment of hypertension. Data have not been provided to support the use of this drug in renovascular disease.

Carvedilol is indicated for the treatment of patients with symptomatic mild to severe (NYHA class II to IV) congestive heart failure (CHF) as an adjunct to conventional treatments (e.g. diuretics, digoxin, ACE inhibitors and vasodilators).

CONTRAINDICATIONS
Carvedilol must not be used in patients with:

- New York Heart Association (NYHA) Class IV decompensated heart failure requiring intravenous inotropic support.
- Bronchial asthma (two cases of death from status asthmaticus have been reported in patients receiving single doses of carvedilol) or related bronchospastic conditions including chronic obstructive pulmonary disease (COPD) with a bronchospastic component.
- Allergic disorders (including asthma and allergic rhinitis) which may suggest a predisposition to bronchospasm.
- Severe sinus bradycardia (less than 45 to 50 beats per minute) or sick sinus syndrome (unless a permanent pacemaker is in place).
- Shock (including cardiogenic and hypovolaemic shock).
- Second and third degree atrioventricular block.
- Known hypersensitivity to carvedilol.
- Hepatic impairment: carvedilol is contraindicated in patients with clinically manifest liver dysfunction.
- Severe hypotension (systolic blood pressure < 85 mmHg).

PRECAUTIONS
Beta-blockers can cause worsening heart failure. Since carvedilol has beta-blocking properties, care must be taken during initiation and up-titration of the drug in heart failure patients, since worsening heart failure has been observed in this phase of treatment. In order to minimise the risk of these events, it is critical to carefully follow the recommended dosing for carvedilol in patients with Congestive Heart Failure (CHF) (see DOSAGE AND ADMINISTRATION).

There are a number of important pharmacokinetic and pharmacodynamic interactions with other drugs (e.g. digoxin, cyclosporin, rifampicin, anaesthetic drugs, anti-arrhythmic drugs) (see INTERACTIONS WITH OTHER MEDICINES).
Abrupt Withdrawal
In patients with heart failure, ischaemic heart disease or angina pectoris, abrupt cessation of therapy may lead to deterioration. There have been reports of severe exacerbation of angina, and of myocardial infarction or ventricular arrhythmias occurring in patients with angina pectoris, following abrupt discontinuation of beta-blocker therapy. Therefore, when discontinuing carvedilol in patients with angina pectoris the dosage should be gradually reduced over a period of about two weeks and the patient should be carefully observed. The same frequency of administration should be maintained. If angina markedly worsens or acute coronary insufficiency develops, reinstitute carvedilol therapy promptly, at least temporarily.

Prinzmetal Variant Angina
Agents with non-selective beta-blocking activity may provoke chest pain in patients with Prinzmetal variant angina. There has been no clinical experience with carvedilol in these patients, although the alpha-blocking activity of carvedilol may prevent such symptoms. Caution should be taken in the administration of carvedilol to patients suspected of having Prinzmetal variant angina.

Bradycardia
In clinical trials, carvedilol caused bradycardia in about 2% of hypertensive patients and 9% of congestive heart failure patients. If pulse rate drops below 55 beats/minute, the dosage should be reduced.

Hypotension
Hypotension and postural hypotension occurred in 9.7% and syncope in 3.4% of congestive heart failure patients receiving carvedilol compared to 3.6% and 2.5% of placebo patients, respectively. The risk for these events was highest during the first 30 days of dosing, corresponding to the up-titration period, and was a cause for discontinuation of therapy in 0.7% of carvedilol patients, compared to 0.4% of placebo patients.

To decrease the likelihood of syncope or excessive hypotension, treatment should be initiated with 3.125 mg b.i.d. (twice daily) for congestive heart failure patients. Dosage should then be increased slowly, according to the recommendations in DOSAGE AND ADMINISTRATION, and the drug should be taken with food. During initiation of therapy, the patient should be cautioned to avoid situations such as driving or hazardous tasks, where injury could result should syncope occur.

Labile Hypertension
Carvedilol should be used with caution in patients with labile or secondary hypertension until further clinical experience is available.

Peripheral Vascular Disease and Raynaud’s Phenomenon
Carvedilol should be used with caution in patients with peripheral vascular disease (e.g. Raynaud's phenomenon) as beta-blockers can precipitate or aggravate symptoms of arterial insufficiency.

Hypertensive Patients with Left Ventricular Failure
In hypertensive patients who have congestive heart failure controlled with digitalis, diuretics and/or an angiotensin converting enzyme inhibitor, carvedilol may be used. However, since it is likely that such patients are dependent, in part, on sympathetic stimulation for circulatory support, it is recommended that dosing follow the instructions for patients with congestive heart failure.

Psoriasis
Patients with a history of psoriasis associated with beta-blocker therapy should take carvedilol only after consideration of the risk-benefit ratio.

Hepatic Injury
Mild hepatocellular injury, confirmed by rechallenge, has occurred rarely with carvedilol therapy.

In controlled studies of congestive heart failure, the incidence of liver function abnormalities reported as adverse experiences was 5.0% (38 of 765 patients) in patients receiving carvedilol and 4.6% (20 of 437 patients) in those receiving placebo. Three patients receiving carvedilol (0.4%) and two patients receiving placebo (0.5%) in placebo controlled trials withdrew for abnormal hepatic function.
Hepatic injury has been reversible and has occurred after short and/or long-term therapy with minimal clinical symptomatology. No deaths due to liver function abnormalities have been reported.

At the first symptom/sign of liver dysfunction (e.g. pruritus, dark urine, persistent anorexia, jaundice, right upper quadrant tenderness or unexplained flu-like symptoms) laboratory testing should be performed. If the patient has laboratory evidence of liver injury or jaundice, carvedilol should be stopped and not restarted.

Renal Function
Rarely, use of carvedilol in patients with congestive heart failure has resulted in deterioration of renal function. Patients at risk appear to be those with low blood pressure (systolic BP < 100 mmHg), ischaemic heart disease and diffuse vascular disease, and/or underlying renal insufficiency. Renal function has returned to baseline when carvedilol was stopped. In patients with these risk factors it is recommended that renal function should be monitored during up-titration of carvedilol and the drug discontinued or dosage reduced if worsening of renal function occurs.

Ocular Effects
Animal studies have shown that carvedilol binds to the melanin of the uveal tract. The significance of this in humans is not known but periodic ophthalmic examinations are advisable while the patient is taking carvedilol.

Oculomucocutaneous syndrome, whose signs include conjunctivitis sicca and psoriasiform rashes, and sclerosing serositis has occurred with the chronic use of one beta-adrenergic blocking agent (practolol). This syndrome has not been observed in association with carvedilol or any other such agent. However, physicians should be alert to the possibility of such reactions and discontinue treatment in the event that they occur.

Wearers of contact lenses should bear in mind the possibility of reduced lacrimation.

Diabetes and Hypoglycaemia
Care should be taken in the administration of carvedilol to patients with diabetes as it may be associated with worsening control of blood glucose, or the early signs and symptoms of acute hypoglycaemia may be masked or attenuated. Non-selective beta-blockers may potentiate insulin induced hypoglycaemia and delay recovery of serum glucose levels. Patients subject to spontaneous hypoglycaemia, or diabetic patients receiving insulin or oral hypoglycaemic agents, should be cautioned about these possibilities and carvedilol should be used with caution. It is recommended that blood glucose be monitored when carvedilol dosing is initiated, adjusted or discontinued (see INTERACTIONS WITH OTHER MEDICINES).

Thyrotoxicosis
Beta-adrenergic blockade may mask the clinical signs of hyperthyroidism such as tachycardia. Abrupt withdrawal of beta-blockade may be followed by an exacerbation of the symptoms of hyperthyroidism or may precipitate thyroid storm.

Hypersensitivity Reactions
Care should be taken in administering carvedilol to patients with a history of serious hypersensitivity reactions, and in those patients undergoing desensitisation therapy, as beta-blockers may increase both the sensitivity towards allergens and the severity of hypersensitivity reactions. Such patients may be unresponsive to the usual doses of adrenaline used to treat allergic reaction.

Severe Cutaneous Adverse Reactions (SCARs)
Very rare cases of severe cutaneous adverse reactions such as toxic epidermal necrolysis (TEN) and Stevens-Johnson syndrome (SJS) have been reported during treatment of carvedilol (see ADVERSE EFFECTS - Post Marketing Experience). Carvedilol should be permanently discontinued in patients who experience severe cutaneous adverse reactions possibly attributable to carvedilol.

Non-Allergic Bronchospasm (e.g. chronic bronchitis and emphysema)
Patients with bronchospastic disease should in general not receive beta-blockers. Carvedilol may be used with caution.
In clinical trials of patients with congestive heart failure, patients with bronchospastic disease were enrolled if they did not require oral or inhaled medication to treat their bronchospastic disease. In such patients, it is recommended that carvedilol be used with caution. The dosing recommendations should be followed closely and the dose should be lowered if any evidence of bronchospasm is observed during up-titration (see INTERACTIONS WITH OTHER MEDICINES).

Phaeochromocytoma
In patients with this condition an alpha-blocking drug (e.g. phenotolamine or phenoxybenzamine) should be administered before the beta-blocker to avoid exacerbation of hypertension. Although carvedilol has both alpha and beta-blocking pharmacological activities, there is no experience with its use in this condition. Therefore, caution should be taken in the administration of carvedilol to patients suspected of having phaeochromocytoma.

Use in Pregnancy (Category C)
There is no adequate clinical experience with carvedilol in pregnant women.

Studies in rats have shown that carvedilol and/or its metabolites cross the placental barrier. Beta-blockers may cause bradycardia in the foetus and newborn infant. During the later stages of pregnancy and parturition these drugs should therefore only be given after weighing the needs of the mother against the risk to the foetus.

Studies in rats and rabbits showed carvedilol was not teratogenic at doses up to 300 and 75 mg/kg/day, respectively. Carvedilol was embryotoxic and foetotoxic at doses greater than 60 mg/kg/day in rats and 15 mg/kg/day in rabbits. Maternal toxicity was noted in rats and rabbits at doses greater than 60 and 75 mg/kg/day, respectively.

Use in Lactation
Carvedilol is excreted in breast milk, although the risk of affecting the child appears unlikely at therapeutic doses, the possibility of the consequences of alpha and beta-blockade should be borne in mind. Carvedilol must not be used during lactation unless the anticipated benefits outweigh the possible risks.

Paediatric Use
Safety and efficacy of carvedilol in patients younger than 18 years of age have not been established.

Use in the Elderly
In congestive heart failure trials of carvedilol worldwide, there were no notable differences in efficacy or the incidence of adverse events between older (greater than or equal to 65 years) and younger patients. With the exception of dizziness (incidence 8.8% in the elderly versus 6% in younger patients) there were no events in the worldwide hypertensive trial population for which the incidence in the elderly exceeded that in the younger population by greater than 2%.

Carcinogenicity
Repeat dose toxicity studies showed an increase in the incidence of bile duct hyperplasia in rats at doses greater than 34 mg/kg/day following 12 and 18 months dietary treatment with carvedilol, and in dogs receiving doses greater than 30 mg/kg/day for 12 months. Focal hepatocellular hyperplasia was noted in rats at oral doses greater than 100 mg/kg/day at three months and greater than 30 mg/kg/day at 12 months of treatment with carvedilol. Hepatocellular hyperplasia was not noted in dogs at doses up to 300 mg/kg/day. In addition, there was a small increase in the incidence of hepatic adenomas in rats receiving carvedilol at doses greater than 100 mg/kg/day in the 18 month dietary study. There was no increase in the incidence of hepatic adenomas in the rat two year dietary carcinogenicity study, in which the average dose was 75 mg/kg/day. Based on AUC, this dose showed a 9 to 15-fold higher systemic exposure when compared to a dose of 50 mg/day in humans. A carcinogenicity study in mice was negative at dietary doses up to 200 mg/kg/day. Therefore, the carcinogenic risk to humans following long-term administration of carvedilol appears to be low.

Effect on Laboratory Tests
Carvedilol does not affect laboratory tests.
Effect on Ability to Drive or Operate Machinery
Individually varying reactions can impair alertness (e.g. patients’ capacity for driving or operating machinery). This applies particularly when starting or changing treatment and in conjunction with alcohol.

INTERACTIONS WITH OTHER MEDICINES
Pharmacokinetic Interactions
Effects Of Carvedilol On The Pharmacokinetics Of Other Drugs
Carvedilol is a substrate as well as an inhibitor of P-glycoprotein. Therefore the bioavailability of drugs transported by P-glycoprotein may be increased with concomitant administration of carvedilol. In addition, the bioavailability of carvedilol can be modified by inducers or inhibitors of P-glycoprotein.

Digoxin
An increased exposure of digoxin of up to 56% has been shown in some studies in healthy subjects and patients with heart failure, when given carvedilol. A significantly larger effect has been seen in male patients compared to female patients. Therefore, monitoring of digoxin levels and signs and symptoms of digoxin toxicity is recommended when initiating, adjusting or discontinuing carvedilol (see also PRECAUTIONS, Pharmacodynamic Interactions below). Carvedilol had no effect on digoxin administered intravenously.

Cyclosporin
Two studies in renal and cardiac transplant patients receiving oral cyclosporin have shown an increase in cyclosporin plasma concentration following the initiation of carvedilol. It appears that carvedilol increases the absorption of cyclosporin (po) through inhibition of P-glycoprotein activity in the intestine. In an attempt to maintain therapeutic cyclosporin levels, an average 10-20% reduction of the cyclosporin dose was necessary. Therefore, due to wide inter-individual variability of cyclosporin levels, it is recommended that cyclosporin concentrations are monitored closely after initiation of carvedilol therapy and that the dose of cyclosporin be adjusted as appropriate. In case of IV administration of cyclosporin, no interaction with carvedilol is anticipated.

Effects of Other Drugs On The Pharmacokinetics Of Carvedilol
Inhibitors as well as inducers of CYP2D6 and CYP2C9 can modify the systemic and/or pre systemic metabolism of carvedilol stereoselectively, leading to increased or decreased plasma concentrations of R and S-carvedilol. Retrospective analysis of side effects in clinical trials showed that poor 2D6 metabolisers had a higher rate of dizziness during up-titration, presumably resulting from vasodilating effects of the higher concentrations of the alpha-blocking R(+) enantiomer (see PHARMACOLOGY - Pharmacokinetics).

Some examples observed in patients or in healthy subjects are listed below but the list is not exhaustive.

Grapefruit Juice
Simultaneous administration of a single dose of carvedilol and 300 mL of grapefruit juice (an inhibitor of CYP3A4 and CYP1A2) increased the AUC of carvedilol by approximately 16%.

Rifampicin
In a study in 12 healthy subjects, exposure to carvedilol decreased by around 60% during concomitant administration with rifampicin and a decreased effect of carvedilol on the systolic blood pressure during exercise was observed. The mechanism for the interaction is not known but it may be due to the induction of the intestinal P-glycoprotein by rifampicin. A close monitoring of the beta-blockade activity in patients receiving concomitant administration of carvedilol and rifampicin is appropriate.

Cimetidine
The AUC of carvedilol was increased by 30% without associated increase in C_max in healthy male subjects receiving concomitant cimetidine which is not a potent CYP2D6 inhibitor.

Amiodarone
An in vitro study with human liver microsomes has shown that amiodarone and desethylamiodarone inhibited the oxidation of R and S-carvedilol. The trough concentration of S-carvedilol was significantly
increased by 2.2 fold in heart failure patients receiving carvedilol and amiodarone concomitantly as compared to patients receiving carvedilol monotherapy. The effect on S-carvedilol was attributed to desethylamiodarone, a metabolite of amiodarone, which is a strong inhibitor of CYP2C9. Monitoring of the β-blockade activity in patients treated with the combination carvedilol and amiodarone is advised.

Fluoxetine and Paroxetine
In a randomised, cross-over study in 10 patients with heart failure, co-administration of fluoxetine, a strong inhibitor of CYP2D6, resulted in stereoselective inhibition of carvedilol metabolism with a 77% increase in mean R(+)-enantiomer’s AUC, and a non-statistically 35% increase of the S(-) enantiomer’s AUC as compared to the placebo group. However, no difference in adverse events and no statistically significant differences in blood pressure and heart rate were noted between treatment groups. The effect of paroxetine, a strong CYP2D6 inhibitor, on carvedilol pharmacokinetics was investigated in 12 healthy subjects following single oral carvedilol administration. In the study, the AUC of R-carvedilol and S-carvedilol were increased by approximately 2.5-fold and 1.9-fold, respectively. Despite significant increase in R- and S-carvedilol exposure, no clinical effects were observed in these healthy subjects. Care should be taken when carvedilol is combined with fluoxetine or paroxetine in clinically unstable patients.

Pharmacodynamic Interactions

Anaesthetic agents
Careful monitoring of vital signs is recommended during anaesthesia due to the synergistic negative inotropic and hypotensive effects of carvedilol and anaesthetic drugs.

Antiarrhythmic Drugs
Care should be taken when prescribing beta-blockers with antiarrhythmic drugs. Interactions have been reported during concomitant beta-blocker therapy with the class IA agents disopyramide, and less frequently quinidine; class IB agents tocainide, mexiletine and lignocaine; class IC agent flecainide; the class III agent amiodarone; and the class IV antiarrhythmic agents.

Antihypertensives
As with other agents with beta-blocking activity, carvedilol may potentiate the effect of other concomitantly administered drugs that are anti-hypertensive in action (e.g. alpha 1-receptor antagonists) or have hypotension as part of their adverse effect profile.

Beta-agonist Bronchodilators
Non-cardioselective beta blockers oppose the bronchodilator effects of beta-agonist bronchodilators. Careful monitoring of patients is recommended.

Calcium Channel Blockers
Isolated cases of conduction disturbance (rarely with haemodynamic compromise) have been observed when carvedilol and diltiazem were co-administered. As with other drugs with beta-blocking activity, if carvedilol is to be administered orally with calcium channel blockers of the verapamil or diltiazem type, it is recommended that ECG and blood pressure be monitored.

Catecholamine Depleting Agents
Patients treated with both carvedilol and a drug that can deplete catecholamines (e.g. reserpine and monoamine oxidase inhibitors) should be observed closely for signs of hypotension and/or severe bradycardia.

Clonidine
Concomitant administration of clonidine with agents with beta-blocking properties may potentiate blood pressure and heart rate lowering effects. When concomitant treatment with agents with beta-blocking properties and clonidine is to be terminated, the beta-blocking agent should be discontinued first. Clonidine therapy can then be discontinued several days later by gradually decreasing the dosage.
Digoxin
The combined use of beta-blockers and digoxin may result in additive prolongation of atrioventricular (AV) conduction time (see Pharmacokinetic Interactions - Effects Of Carvedilol On The Pharmacokinetics Of Other Drugs, above).

Insulin or Oral Hypoglycaemics
Agents with beta-blocking properties may enhance the blood sugar reducing effect of insulin and oral hypoglycaemics. The signs of hypoglycaemia may be masked or attenuated (especially tachycardia). Therefore, in patients taking insulin or oral hypoglycaemics, regular monitoring of blood glucose is recommended (see PRECAUTIONS, Diabetes and Hypoglycaemia).

NSAIDs
The concurrent use of non-steroidal anti-inflammatory drugs (NSAIDs) and beta-adrenergic blockers may result in an increase in blood pressure and impairment of blood pressure control.

ADVERSE EFFECTS
Carvedilol is well tolerated by most patients. Most of the adverse reactions are transient and occur at the beginning of treatment. Adverse reactions are related to the pharmacological effects and to the dose.

Carvedilol has been evaluated for safety in mild to moderate congestive heart failure in more than 1,900 patients worldwide, of whom 1,300 participated in US clinical trials. Approximately 54% of the total treated population received carvedilol for at least six months and 20% received carvedilol for at least 12 months. The adverse experience profile of carvedilol in congestive heart failure patients was consistent with the pharmacology of the drug and the health status of the patients. In U.S. clinical trials comparing carvedilol in daily doses up to 100 mg (n=765) to placebo (n=437), 5.4% of carvedilol patients discontinued for adverse experiences versus 8.0% of placebo patients. Generally, the overall incidence of adverse experiences in U.S. placebo controlled trials was not related to dose. However, there was an increased incidence of dizziness, abnormal vision (primarily blurry vision), and bradycardia, with increasing dose.

More Common Events (Occurring with a Frequency of > 1 %)
Events Occurring with a Frequency ≥ 2%
Table 2 shows adverse events in U.S. placebo controlled clinical trials of congestive heart failure patients that occurred with an incidence of 2% or more regardless of causality and were more frequent in drug treated patients than placebo treated patients. Median study medication exposure was 6.33 months for carvedilol and placebo patients.

In addition to the events in Table 2, asthenia, cardiac failure, flatulence, anorexia, dyspepsia, palpitation, extrasystoles, hyperkalaemia, arthritis, angina pectoris, insomnia, depression, anaemia, viral infection, dyspnoea, coughing, respiratory disorder, rhinitis, rash and leg cramps were also reported, but rates were equal to, or more common in, placebo treated patients.

Table 2: Adverse Events in U.S. Placebo Controlled Congestive Heart Failure Trials, Frequency ≥ 2% in Carvedilol Treated Patients, Regardless of Causality

<table>
<thead>
<tr>
<th>ADVERSE EVENT</th>
<th>CARVEDILOL (n = 765) (% occurrence)</th>
<th>PLACEBO (n = 437) (% occurrence)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autonomic Nervous System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sweating increased</td>
<td>2.9</td>
<td>2.1</td>
</tr>
<tr>
<td>Body as a Whole</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fatigue</td>
<td>23.9</td>
<td>22.4</td>
</tr>
<tr>
<td>Chest pain</td>
<td>14.4</td>
<td>14.2</td>
</tr>
<tr>
<td>Pain</td>
<td>8.6</td>
<td>7.6</td>
</tr>
<tr>
<td>Injury</td>
<td>5.9</td>
<td>5.5</td>
</tr>
</tbody>
</table>
Product Information – Australia

<table>
<thead>
<tr>
<th>ADVERSE EVENT</th>
<th>CARVEDILOL (n = 765) (%) occurrence</th>
<th>PLACEBO (n = 437) (%) occurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drug level increased</td>
<td>5.1</td>
<td>3.7</td>
</tr>
<tr>
<td>Oedema, generalised</td>
<td>5.1</td>
<td>2.5</td>
</tr>
<tr>
<td>Oedema, dependent</td>
<td>3.7</td>
<td>1.8</td>
</tr>
<tr>
<td>Fever</td>
<td>3.1</td>
<td>2.3</td>
</tr>
<tr>
<td>Oedema, legs</td>
<td>2.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Cardiovascular</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bradycardia</td>
<td>8.8</td>
<td>0.9</td>
</tr>
<tr>
<td>Hypotension</td>
<td>8.5</td>
<td>3.4</td>
</tr>
<tr>
<td>Syncope</td>
<td>3.4</td>
<td>2.5</td>
</tr>
<tr>
<td>Hypertension</td>
<td>2.9</td>
<td>2.5</td>
</tr>
<tr>
<td>AV block</td>
<td>2.9</td>
<td>0.5</td>
</tr>
<tr>
<td>Angina pectoris, aggravated</td>
<td>2.0</td>
<td>1.1</td>
</tr>
<tr>
<td>Central Nervous System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dizziness</td>
<td>32.4</td>
<td>19.2</td>
</tr>
<tr>
<td>Headache</td>
<td>8.1</td>
<td>7.1</td>
</tr>
<tr>
<td>Paraesthesia</td>
<td>2.0</td>
<td>1.8</td>
</tr>
<tr>
<td>Gastrointestinal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diarrhoea</td>
<td>11.8</td>
<td>5.9</td>
</tr>
<tr>
<td>Nausea</td>
<td>8.5</td>
<td>4.8</td>
</tr>
<tr>
<td>Abdominal pain</td>
<td>7.2</td>
<td>7.1</td>
</tr>
<tr>
<td>Vomiting</td>
<td>6.3</td>
<td>4.3</td>
</tr>
<tr>
<td>Haematology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thrombocytopenia</td>
<td>2.0</td>
<td>0.5</td>
</tr>
<tr>
<td>Metabolic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hyperglycaemia</td>
<td>12.2</td>
<td>7.8</td>
</tr>
<tr>
<td>Weight increase</td>
<td>9.7</td>
<td>6.9</td>
</tr>
<tr>
<td>Gout</td>
<td>6.3</td>
<td>6.2</td>
</tr>
<tr>
<td>BUN increased</td>
<td>6.0</td>
<td>4.6</td>
</tr>
<tr>
<td>NPN increased</td>
<td>5.8</td>
<td>4.6</td>
</tr>
<tr>
<td>Hypercholesterolaemia</td>
<td>4.1</td>
<td>2.5</td>
</tr>
<tr>
<td>Dehydration</td>
<td>2.1</td>
<td>1.6</td>
</tr>
<tr>
<td>Hypervolaemia</td>
<td>2.0</td>
<td>0.9</td>
</tr>
<tr>
<td>Musculoskeletal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Back pain</td>
<td>6.9</td>
<td>6.6</td>
</tr>
<tr>
<td>Arthralgia</td>
<td>6.4</td>
<td>4.8</td>
</tr>
<tr>
<td>Myalgia</td>
<td>3.4</td>
<td>2.7</td>
</tr>
<tr>
<td>Resistance Mechanism</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper respiratory tract infection</td>
<td>18.3</td>
<td>17.6</td>
</tr>
<tr>
<td>Infection</td>
<td>2.2</td>
<td>0.9</td>
</tr>
<tr>
<td>Respiratory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sinusitis</td>
<td>5.4</td>
<td>4.3</td>
</tr>
<tr>
<td>Bronchitis</td>
<td>5.4</td>
<td>3.4</td>
</tr>
<tr>
<td>Pharyngitis</td>
<td>3.1</td>
<td>2.7</td>
</tr>
<tr>
<td>Urinary / Renal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urinary tract infection</td>
<td>3.1</td>
<td>2.7</td>
</tr>
<tr>
<td>Haematuria</td>
<td>2.9</td>
<td>2.1</td>
</tr>
<tr>
<td>ADVERSE EVENT</td>
<td>CARVEDILOL (n = 765) (% occurrence)</td>
<td>PLACEBO (n = 437) (% occurrence)</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-----------------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Vision</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vision abnormal</td>
<td>5.0</td>
<td>1.8</td>
</tr>
</tbody>
</table>

The following adverse events were reported more frequently with carvedilol in placebo controlled trials in patients with congestive heart failure.

Events Occurring with Frequency of > 1% to < 2%

- **Body as a Whole:** Peripheral oedema, allergy, sudden death, malaise, hypovolaemia.
- **Cardiovascular System:** Fluid overload, postural hypotension.
- **Central & Peripheral Nervous System:** Hyperaesthesia, vertigo.
- **Gastrointestinal:** Melaena, periodontitis.
- **Liver & Biliary System:** AST and ALT increased.
- **Haematology:** Purpura, prothrombin decreased.
- **Metabolic & Nutritional:** Hyperuricaemia, hypoglycaemia, hyponatraemia, increased alkaline phosphatase, glycosuria.
- **Psychiatric:** Somnolence.
- **Reproductive, Male:** Impotence.
- **Urinary System:** Abnormal renal function, albuminuria.

Less common > 0.1 % to ≤1 %

The following adverse events were reported as possibly or probably related in worldwide open or controlled trials with carvedilol in patients with hypertension or congestive heart failure.

- **Cardiovascular:** Peripheral ischaemia, tachycardia.
- **Central & Peripheral Nervous System:** Hypokinesia.
- **Gastrointestinal:** Hyperbilirubinaemia, increased hepatic enzymes (0.2% of hypertension patients and 0.4% of congestive heart failure patients were discontinued from therapy because of increases in hepatic enzymes; see PRECAUTIONS, Hepatic injury).
- **General:** Substernal chest pain, oedema.
- **Psychiatric:** Sleep disorder, aggravated depression, impaired concentration, abnormal thinking, paranoia, emotional lability.
- **Respiratory System:** Asthma (see CONTRAINDICATIONS).
- **Reproductive, male:** Decreased libido.
- **Skin & Appendages:** Pruritus, erythematous rash, maculopapular rash, psoriiform rash, photosensitivity reaction.
- **Special Senses:** Tinnitus.
Urinary System: Micturition frequency.

Autonomic Nervous System: Dry mouth, sweating increased.

Metabolic & Nutritional: Hypokalaemia, diabetes mellitus, hypertriglyceridaemia.

Haematology: Anaemia, leucopenia.

The following events were reported in ≤ 0.1% of patients (all clinical trials) and are potentially important: complete AV block, bundle branch block, myocardial ischaemia, cerebrovascular disorder, convulsions, migraine, neuralgia, paresis, anaphylactoid reaction, alopecia, exfoliative dermatitis, amnesia, GI haemorrhage, bronchospasm, pulmonary oedema, decreased hearing, respiratory alkalosis, increased BUN, decreased HDL, pancytopenia and atypical lymphocytes.

Adverse Events in Severe Congestive Heart Failure

The overall safety and tolerability of carvedilol in the COPERNICUS study in patients with severe CHF was found to be in good agreement with the established safety profile for patients with mild and moderate CHF.

The incidence of serious adverse events was lower in the carvedilol (39.0%) than in the placebo (45.5%) group, and the rate of withdrawal from treatment due to adverse events was also lower in the carvedilol (9.5%) than in the placebo (11.3%) group.

The most frequently occurring serious adverse events were cardiovascular disorders, the incidences of which were lower in the carvedilol (26.3%) than in the placebo group (34.2%). Among cardiovascular disorders, worsening heart failure was the most commonly reported serious adverse event. During initiation of treatment the risk of worsening heart failure was similar in the two groups, but with continued treatment the risk of worsening heart failure decreased in the carvedilol group resulting in a slightly lower overall incidence in the carvedilol group (26%) compared with the placebo group (31.5%). The risk of experiencing vasodilatory events such as dizziness, hypotension and syncope was highest during initiation of carvedilol treatment and the risk decreased with continued treatment. Within the body system ‘body as a whole’ the most frequently reported serious adverse event was sudden death and the incidence was lower in the carvedilol group (see Table 3).

TABLE 3 Adverse Events in The Copernicus Trial Occurring with a Frequency ≥ 2%

<table>
<thead>
<tr>
<th>ADVERSE EVENTS</th>
<th>CARVEDILOL (n = 1156) (%) occurrence</th>
<th>PLACEBO (n = 1133) (%) occurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body as a Whole</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asthenia</td>
<td>10.9</td>
<td>9.4</td>
</tr>
<tr>
<td>Sudden death</td>
<td>3.9</td>
<td>6.1</td>
</tr>
<tr>
<td>Abdominal pain</td>
<td>2.2</td>
<td>3.0</td>
</tr>
<tr>
<td>Infection</td>
<td>2.5</td>
<td>2.4</td>
</tr>
<tr>
<td>Pain in extremity</td>
<td>2.1</td>
<td>2.5</td>
</tr>
<tr>
<td>Back pain</td>
<td>2.9</td>
<td>1.4</td>
</tr>
<tr>
<td>Accidental injury</td>
<td>1.7</td>
<td>2.0</td>
</tr>
<tr>
<td>Cardiovascular System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heart failure</td>
<td>26.0</td>
<td>31.5</td>
</tr>
<tr>
<td>Hypotension</td>
<td>13.9</td>
<td>8.2</td>
</tr>
<tr>
<td>Chest pain</td>
<td>6.8</td>
<td>7.6</td>
</tr>
<tr>
<td>Bradycardia</td>
<td>10.3</td>
<td>2.7</td>
</tr>
<tr>
<td>Syncope (including pre-syncope)</td>
<td>7.6</td>
<td>5.0</td>
</tr>
<tr>
<td>Angina pectoris</td>
<td>5.5</td>
<td>4.1</td>
</tr>
<tr>
<td>Atrial fibrillation</td>
<td>2.2</td>
<td>4.3</td>
</tr>
<tr>
<td>ADVERSE EVENTS</td>
<td>CARVEDILOL (n = 1156) (% occurrence)</td>
<td>PLACEBO (n = 1133) (% occurrence)</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>-------------------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Ventricular tachycardia</td>
<td>1.6</td>
<td>3.9</td>
</tr>
<tr>
<td>Hypertension</td>
<td>2.6</td>
<td>2.2</td>
</tr>
<tr>
<td>Unstable angina pectoris</td>
<td>2.0</td>
<td>2.7</td>
</tr>
<tr>
<td>AV block first degree</td>
<td>2.3</td>
<td>1.6</td>
</tr>
<tr>
<td>Peripheral vascular disorder</td>
<td>1.6</td>
<td>2.4</td>
</tr>
<tr>
<td>Myocardial infarct</td>
<td>1.6</td>
<td>2.2</td>
</tr>
<tr>
<td>Ventricular fibrillation</td>
<td>1.0</td>
<td>2.1</td>
</tr>
<tr>
<td>Nervous System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dizziness</td>
<td>24.1</td>
<td>16.8</td>
</tr>
<tr>
<td>Headache</td>
<td>4.8</td>
<td>3.0</td>
</tr>
<tr>
<td>Gastrointestinal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diarrhoea</td>
<td>4.8</td>
<td>3.1</td>
</tr>
<tr>
<td>Nausea</td>
<td>3.8</td>
<td>3.3</td>
</tr>
<tr>
<td>Haematology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anaemia</td>
<td>2.4</td>
<td>2.0</td>
</tr>
<tr>
<td>Metabolic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight gain</td>
<td>11.7</td>
<td>10.7</td>
</tr>
<tr>
<td>Peripheral oedema</td>
<td>7.0</td>
<td>6.4</td>
</tr>
<tr>
<td>Generalised oedema</td>
<td>6.0</td>
<td>4.9</td>
</tr>
<tr>
<td>Hyperglycaemia</td>
<td>4.5</td>
<td>3.3</td>
</tr>
<tr>
<td>Gout</td>
<td>3.5</td>
<td>2.7</td>
</tr>
<tr>
<td>Hypokalaemia</td>
<td>2.5</td>
<td>3.4</td>
</tr>
<tr>
<td>Hyperkalaemia</td>
<td>3.3</td>
<td>1.9</td>
</tr>
<tr>
<td>Creatinine increased</td>
<td>2.9</td>
<td>1.4</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>2.0</td>
<td>1.7</td>
</tr>
<tr>
<td>Musculoskeletal System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muscle cramps</td>
<td>2.0</td>
<td>1.2</td>
</tr>
<tr>
<td>Respiratory System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper respiratory infection</td>
<td>13.6</td>
<td>12.6</td>
</tr>
<tr>
<td>Dyspnoea</td>
<td>11.2</td>
<td>11.0</td>
</tr>
<tr>
<td>Bronchitis</td>
<td>5.2</td>
<td>4.5</td>
</tr>
<tr>
<td>Cough increased</td>
<td>4.5</td>
<td>4.2</td>
</tr>
<tr>
<td>Lung oedema</td>
<td>3.5</td>
<td>4.1</td>
</tr>
<tr>
<td>Lung disorder</td>
<td>4.0</td>
<td>3.2</td>
</tr>
<tr>
<td>Pneumonia</td>
<td>3.2</td>
<td>3.9</td>
</tr>
<tr>
<td>Urogenital System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kidney function abnormal</td>
<td>2.1</td>
<td>2.3</td>
</tr>
<tr>
<td>Urinary tract infection</td>
<td>1.6</td>
<td>2.4</td>
</tr>
<tr>
<td>Vision</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blurred vision</td>
<td>2.8</td>
<td>2.2</td>
</tr>
<tr>
<td>Skin and Appendages</td>
<td>7.1</td>
<td>6.9</td>
</tr>
</tbody>
</table>

Post-Marketing Experience

The following adverse events have been identified during post-marketing use of carvedilol. As these events are reported from a population of uncertain size, it is not possible to reliably estimate their frequency and/or establish a causal relationship to drug exposure.
Metabolism and Nutrition Disorders: Due to the β-blocking properties, it is also possible for latent diabetes mellitus to become manifest, manifest diabetes to be aggravated, and blood glucose counter-regulation to be inhibited.

Renal and Urinary Disorders: Isolated cases of urinary incontinence in women, which resolved upon discontinuation of the medication, have been reported.

Skin and Subcutaneous Tissue Disorders: Alopecia. Severe cutaneous adverse reactions (toxic epidermal necrolysis, Stevens-Johnson syndrome) (see PRECAUTIONS).

DOSAGE AND ADMINISTRATION

Hypertension
Once daily dosing is recommended.

Adults
The recommended dose for initiation of therapy is 12.5 mg once a day for the first two days. Thereafter the recommended dosage is 25 mg once a day. If necessary, the dosage may subsequently be increased at intervals of at least two weeks up to the recommended maximum daily dose of 50 mg given once a day or twice daily.

Elderly
The recommended dose for initiation of therapy is 12.5 mg once daily, which has provided satisfactory control in some patients. If the response is inadequate, the dose may be titrated at intervals of at least two weeks up to the recommended maximum daily dose.

Carvedilol can be combined with other antihypertensive agents, thiazide diuretics in particular.

Symptomatic Congestive Heart Failure
Dosage must be individualised and closely monitored by the physician during up-titration.

For patients receiving digitalis, diuretics and ACE inhibitors, dosing of these agents should be stabilised prior to initiation of carvedilol.

It is recommended that carvedilol be taken with food to slow the rate of absorption and to reduce the risk of orthostatic effects. The tablets should be swallowed with sufficient fluid.

The recommended starting dose is 3.125 mg twice daily for two weeks. If this dose is tolerated, the dosage may subsequently be increased, at intervals of not less than two weeks, to 6.25 mg twice daily, followed by 12.5 mg twice daily, then 25 mg twice daily. Dosing should be increased to the highest level tolerated by the patient.

The recommended maximum daily dose is 25 mg twice daily in patients with mild or moderate CHF weighing less than 85 kg. In patients with mild or moderate CHF weighing more than 85 kg, the recommended maximum daily dose is 50 mg twice daily. For all patients with severe CHF the recommended maximum daily dose is 25 mg twice daily.

For severe CHF, before commencement of therapy, patients should be fully clinically evaluated to ensure that they have sitting systolic blood pressure ≥ 85 mmHg, no more than trace oedema of the peripheral limbs, no new pulmonary rales or ascites, optimisation of diuretic therapy and other established therapy such as ACE inhibitors and angiotensin II antagonists, no recent unstable angina, cardiac surgery or ventricular arrhythmias and no recent use of intravenous positive inotropic or vasodilator agents (other than digitalis).

Before each dose increase, the patient should be evaluated by the physician for symptoms of worsening heart failure, vasodilation or bradycardia. If either heart failure or vasodilation occurs the dose of carvedilol should not be increased until symptoms of heart failure or vasodilation have been stabilised.
If bradycardia (pulse rate < 55 beats/min) occurs, the dose of carvedilol should be reduced.

Transient worsening of heart failure or fluid retention should be treated with increased doses of diuretics. Occasionally it may be necessary to lower the dose of carvedilol or temporarily discontinue carvedilol. If carvedilol is discontinued for more than two weeks, therapy should be recommenced at 3.125 mg twice daily and up-titrated in line with the above dosing recommendations. Such episodes do not preclude subsequent successful titration of carvedilol.

Symptoms of vasodilation may be managed initially by a reduction in the dose of diuretics. If symptoms persist the dose of ACE inhibitor (if used) may be reduced, followed by a reduction in the dose of carvedilol if necessary.

Hepatic Dysfunction

Since plasma levels have been shown to be increased in patients with cirrhosis, carvedilol is not recommended in patients with significant liver disease.

Renal Dysfunction

Dosage adjustments are not required for mild to moderate impairment, however, in patients with underlying renal insufficiency, renal function should be monitored during up-titration of carvedilol and the drug discontinued or dosage reduced if worsening of renal function occurs.

OVERDOSAGE

Symptoms

Cases of overdosage with carvedilol alone or in combination with other drugs have been reported. Quantities ingested in some cases exceeded 1,000 mg. Symptoms experienced included low blood pressure and heart rate. Standard supportive treatment was provided and individuals recovered.

In the event of overdosage, there may be severe hypotension, bradycardia, heart failure, cardiogenic shock and cardiac arrest. There may also be respiratory problems, bronchospasm, vomiting, disturbed consciousness and generalised seizures.

Treatment

Treatment of overdose should consist of general supportive measures.

The patient should be monitored for the above mentioned signs and symptoms and managed according to the best judgement of the treating physicians and according to standard practice for patients with beta-blocker overdose (e.g. atropine, transvenous pacing, glucagon, phosphodiesterase inhibitors such as milrinone, beta-sympathomimetics).

Note: In the event of severe intoxication with symptoms of shock, supportive treatment with antidotes must be continued for a sufficiently long period of time since prolonged elimination half-life and redistribution of carvedilol from deeper compartments can be expected. Duration of antidote therapy is dependent upon severity of overdose. Supportive measures should therefore be continued until the patient is stabilised.

For information on the management of overdose, contact the Poison Information Centre on 13 11 26 (Australia).

PRESENTATION AND STORAGE CONDITIONS

APO-Carvedilol tablets are intended for oral administration. Each tablet contains 3.125 mg, 6.25 mg, 12.5 mg or 25 mg of carvedilol as the active ingredient.

APO-Carvedilol 3.125 mg tablets:

White oval shaped, film-coated tablets, imprinted with « P » logo on one side and plain on the other side. Packs of 30 tablets.
Blister (white opaque PVC/Aluminium silver foil): AUST R 123823.
Bottle: (white HDPE) AUST R 123825.
APO-Carvedilol 6.25 mg tablets:
White oval shaped, film-coated tablets, imprinted « 6.25 » on one side and « P » logo on the other side
Packs of 30 and 60 tablets.
Blister: (white opaque PVC/Aluminium silver foil). AUST R 123828.
*Bottle: (white HDPE). AUST R 123833.

APO-Carvedilol 12.5 mg tablets:
White oval shaped, film-coated tablets, imprinted « 12.5 » on one side and « P » logo on the other side
Packs of 60 tablets.
Blister: (white opaque PVC/Aluminium silver foil). AUST R 123836.
*Bottle: (white HDPE). AUST R 123837.

APO-Carvedilol 25 mg tablets:
White oval shaped, film-coated tablets, imprinted « 25 » on one side and « P » logo on the other side
Packs of 60 tablets.
Blister: (white opaque PVC/Aluminium silver foil). AUST R 123840.
*Bottle: (white HDPE). AUST R 123841.

* Not all strengths, pack types and/or pack sizes may be available.

Storage
Store below 25°C. Protect from light and moisture.
Blister: Store in original package. Tablets should be kept in the blister until immediately before use.
Bottle: Tablets should be kept in the bottle until immediately before use.

NAME AND ADDRESS OF THE SPONSOR
Apotex Pty Ltd
16 Giffnock Avenue
Macquarie Park, NSW 2113

APO and APOTEX are registered trade marks of Apotex Inc

POISON SCHEDULE OF THE MEDICINE
S4: Prescription Only Medicine

DATE OF FIRST INCLUSION IN THE AUSTRALIAN REGISTER OF THERAPEUTIC GOODS (THE ARTG): 20 November 2007

DATE OF MOST RECENT AMENDMENT: 06 October 2015